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A Lagrangian approach to Burgers turbulence is carried out along the lines of the field theoretical Martin-
Siggia-Rose formalism of stochastic hydrodynamics. We derive, from an analysis based on the hypothesis of
unbroken Galilean invariance, the asymptotic form of the probability distribution function of negative velocity
differences. The origin of Burgers intermittency is found to rely on the dynamical coupling between shocks,
identified to instantons, and noncoherent background fluctuations, which—then—cannot be discarded in a
consistent statistical description of the flow.
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I. INTRODUCTION

The long established Burgers model of compressible one-
dimensional flow �1� provides an interesting testing ground
for the performance of numerical and analytical strategies in
turbulence research. Despite its own peculiar phenomenol-
ogy, as evidenced by the complete failure of approximations
based on the “K41” scaling theory �2�, there are important
conceptual analogies between the Burgers model and the
usual three-dimensional turbulence �see Ref. �3� for a com-
prehensive review�.

We note, in passing, that the Burgers model is more than
just a “mathematical toy;” in its multidimensional version
the Burgers equation plays an important role in several real-
istic problems such as nonlinear acoustics �4�, cosmology
�5,6�, critical interface growth �7�, and traffic flow dynamics
�8�.

A great deal of attention has been focused on the problem
of non-Gaussian fluctuations observed in the high Reynolds
number regime of Burgers dynamics—the intermittency phe-
nomenon, for short. As it is verified through numerical simu-
lations �9,10�, velocity differences

z = u�x + �,t� − u�x − �,t� �1�

are found to be very intermittent at small scales �� much
lesser than the integral scale L�. The probability distribution
function �pdf� of the right tail of z, which decays faster than
Gaussian, has been analytically obtained in a number of dif-
ferent ways �10–13�. The viscous left tail �far left tail� also
decays faster than Gaussian, as derived by Balkovsky et al.
�14�. In the inviscid limit, however, the left tail is related to
Burgers shocks and is found to have a power-law profile
��z��1 / �z��, with no sharp consensus on the value taken by
the exponent �.

A Fokker-Planck approach to the computation of velocity-
difference pdfs, with closure given by an operator product
expansion treatment of the dissipative anomaly was put for-
ward by Polyakov �12�. This method provides a fine descrip-
tion of the pdf’s right tail and yields a power-law form for
the left tail with 5 /2���3 �15�. Extensive numerical simu-
lations performed by Gotoh and Kraichnan �10� indicate that
�=3. At variance with such findings, an analytical study
based on the velocity field profiles in space-time neighbor-

hoods of shocks—the so-called preshock events—gives �
=7 /2 �13,16�, a result confirmed by alternative Lagrangian
simulations of the Burgers equation �17,18�.

In an attempt to conceal these apparently contradictory
conclusions, Boldyrev et al. �19� suggested that the left tail
exponent is not universal, departing from �=3 if flow real-
izations fail to satisfy a strong form of Galilean invariance,
which holds—by definition—if usual Galilean invariance is
observed in the bulk, regardless the boundary conditions at
infinity. In rephrased form, the whole point of Ref. �19� is
that finite-size effects which break strong Galilean invariance
would lock larger fluctuations of shock jumps and negative
velocity derivatives, reducing intermittency. In this paper, we
find support to the conjecture that the left tail exponent is
�=3 when the strong form of Galilean invariance is fulfilled.

This work is organized as follows. In Sec. II, we introduce
Burgers intermittency as a phenomenon related, in the invis-
cid limit, to shock amplitude fluctuations. The great conve-
nience of a Lagrangian description of the flow is then
pointed out. In Sec. III, we discuss the Martin-Siggia-Rose
�MSR� formulation of stochastic hydrodynamics �20,21�
within the Lagrangian perspective. In Sec. IV, Burgers
shocks will be given as instantons �11,22�, and background
fluctuations around them will be taken into account in the
computation of the asymptotic behavior of the pdf of nega-
tive velocity differences. In Sec. V, we summarize and dis-
cuss our results. In Appendixes A and B we provide techni-
cal details on some of the material discussed in Sec. IV.

II. PHENOMENOLOGICAL CONSIDERATIONS

The Burgers model describes the dynamics of a one-
dimensional velocity field u=u�x , t� ruled by the evolution
equation

�tu + u�xu = ��x
2u + f , �2�

where � is the kinematical viscosity and f = f�x , t� is the ex-
ternal force which sustains the flow and introduces the inte-
gral length scale L. There is no pressure term in the above
equation and no imposition of incompressibility as well.

Let u0�x��u�x ,0� be the velocity field at initial time sup-
posed to be a C1 function defined on −��x��. The
Cauchy problem is exactly solvable for the Burgers equation
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�23,24�. In the forceless case, the velocity field is, at time
t�0,

u�x,t� = − 2��x

	 ln�	
−�

�

dy exp
−
�x − y�2

4�t
−

1

2�
	

0

y

dx�u0�x���� .

�3�

As it is well known, Eq. �3� leads, in the vanishing viscosity
limit, to discontinuous shocks �i.e., the velocity field be-
comes piecewise C1�, which can be interpreted as “sinks” of
fluid particles. External forcing does not spoil the process of
shock creation, even though it can affect the statistics of
shock amplitudes.

Stable and unstable regions of the flow are distinguished,
essentially, by the sign of the spatial velocity derivative. Ne-
glecting higher-order corrections, consider the expansion
u�x , t�=
0�t�+
1�t�x in the neighborhood of an arbitrary
point. Equation �2� gives, for f�x , t�=0,


̇0 + 
0
1 = 0,


̇1 + 
1
2 = 0, �4�

leading to


0�t� = 
0�0�exp
− 	
0

t

dt�
1�t��� , �5�

where


1�t� =

1�0�

1 + 
1�0�t
. �6�

Therefore, if 
1�0�=�xu �t=0 is positive, we expect from Eq.
�6� that �xu will decay. On the other hand, if 
1�0� is nega-
tive then ��xu� will increase in time, implying flow instability.
This is the mechanism for the generation of large negative
velocity derivatives in Burgers turbulence, which in a time
scale of order 1 / ��xu� are transformed into long-lived shocks.

We are interested to study the statistics of negative veloc-
ity differences z for �→0 and � /L�1. Under these circum-
stances, shock jumps provide the main contribution to the
strong fluctuations of z. A time series of z would exhibit
intermittent negative spikes associated with the passage of
shocks separated by much weaker signals due to smooth ve-
locity configurations.

Suppose, now that fluctuations of z are alternatively mea-
sured from the subtraction of velocity fields defined at points
x�t�+� and x�t�−�, where x�t� is the position of a fluid ele-
ment that moves with the flow. We expect to have, in such a
Lagrangian framework, the same asymptotic power-law form
for the left tail pdf of z. The central point in this correspon-
dence is that fluid particles typically spend a finite fraction of
their times at shock discontinuities. Once a fluid particle is
dragged into a shock discontinuity, it remains there until the
shock collapses or it is absorbed by another one.

Negative spikes in the Eulerian time series of z are re-
placed, in the Lagrangian reference frame, by smooth fluc-
tuations of shock amplitudes, which last for much longer

times. In order to compute statistical properties of the Eule-
rian negative spikes, one would have to find out how shocks
match to each other in solutions of the Burgers equation.
Within the Lagrangian framework, on the other hand, it suf-
fices to describe fluctuations around isolated shocks—a
much simpler task that points out, for our purposes, the ad-
vantage of Lagrangian methods over Eulerian ones.

III. PATH-INTEGRAL FRAMEWORK

In the stochastic hydrodynamics approach to Burgers tur-
bulence, the external forcing in Eq. �2� is taken to be a large
scale Gaussian random field, with zero mean and correlator


f�x,t�f�x�,t��� = D��x − x�����t − t�� , �7�

where we take

D��x − x��� = D0 exp�− �x − x��2/L2� . �8�

The conditional probability density functional to have ve-
locity configuration u0�x� at time t=0 if u−T�x� is the velocity
at time t=−T can be written as the path integral �20,21�

Z = N	 DûDu exp�iS� , �9�

where N is an unimportant normalization factor �which will
be usually supressed from notation� and

S = S�û,u� � 	
−T

0

dt	 dxû��tu + u�xu − ��x
2u�

+
i

2
	

−T

0

dt	 dxdx�û�x,t�û�x�,t�D��x − x��� �10�

is the so-called MSR action. Expressions �9� and �10� are
subject to the boundary conditions

u0�x� = u�x,0� ,

u−T�x� = u�x,− T� . �11�

In order to pave the way for a Lagrangian description of the
flow, let us consider a general reference frame R� which
moves with velocity 
�t� relative to the original �inertial�
“laboratory” frame R. The position and velocity in R� are

x� = x − 	
−T

t

dt�
�t�� , �12�

u
�x�,t� = u�x,t� − 
�t� . �13�

In the moving frame, the velocity at the origin �x�=0� is
defined as

u
�t� � u
�0,t� = u
	
−T

t

dt�
�t��,t� − 
�t� . �14�

For a given field u=u�x , t�, there is a unique time-dependent
function 
�t� which solves u
�0, t�=0. It is clear that 
�t� is
in this case the velocity of a locally comoving reference
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frame—that is how Lagrangian coordinates come into play.
We introduce, correspondingly, the Faddeev-Popov determi-
nant �25� ��u�0, t�� by means of

�−1�u�0,t�� � 	 D
��u
�t�� . �15�

Note that ��u�0, t�� is invariant under the generalized Gal-
ilean transformations given by Eqs. �12� and �13�. In fact,

�−1�u
0
�t�� � 	 D
��u
+
0

�t��

=	 D
��u
�t�� = �−1�u�0,t�� . �16�

Relation �15� yields

��u�0,t��	 D
��u
�t�� = 1. �17�

Inserting Eq. �17� into the integrand of Eq. �9� and exchang-
ing the order of integrations, we get

Z =	 D
	 DûDu��u�0,t����u
�t��exp�iS� . �18�

Generalized Galilean transformations can be used to re-
place the Dirac’s delta functional in Eq. �18� by ��u
=0�t��
=��u�0, t��. To accomplish that, we first substitute, in the
MSR action of Eq. �18�, the integration fields u�x , t� and
û�x , t� by Galilean transformed ones through

u�x,t� = u
�x�,t� + 
�t� , �19�

û�x,t� = û
�x�,t� . �20�

We find

S = S
 + 	
−T

0

dt	 dxû


d


dt
, �21�

where

S � S�û�x,t�,u�x,t�� , �22�

S
 � S�û
�x,t�,u
�x,t�� . �23�

The additional term on the right-hand side �RHS� of Eq. �21�
takes account of the noninertial force due to the acceleration

̇ of the reference frame R�.

The Jacobian associated with the above transformations is
unity, as can be verified from the matrix elements

Ô�x1,x2�t1,t2� �
�û�x1,t1�
�û
�x2,t2�

=
�u�x1,t1�
�u
�x2,t2�

= �
x1 − x2 + 	
−T

t1

dt�
�t�����t1 − t2� .

�24�

The operator which has the matrix elements given by �24�
can be written in any reasonable functional space of space-
time-dependent functions as

Ô = exp
	
−T

t

dt�
�t��
�

�x
� . �25�

The eigenstates of Ô are the momentum wave functions
exp�ipx�. Using a parity-preserving discretization of the Fou-
rier space, the Jacobian turns out to be

det�Ô� = �
p

exp
ip	
−T

t

dt�
�t��� = 1. �26�

The Faddeev-Popov determinant ��u�0, t�� is also unity. In
fact, consider the velocity field which has been “gauge
fixed,” with the help of a generalized Galilean transforma-
tion, to u�0, t�=0. We have, then, to substitute the functional
Taylor expansion of u
�t� up to first order in 
�t� in Eq. �15�.
Defining g�t�=�xu�x , t� �x=0, we get

u
�t� = g�t�	
−T

t

dt�
�t�� − 
�t� + O�
2�t�� , �27�

so that

�−1�u�0,t�� � 	 D
�
g�t�	
−T

t

dt�
�t�� − 
�t��
= �det���t − t�� − ��t − t��g�t���−1. �28�

Using, now, the identity

det�X� = exp�Tr�ln X�� , �29�

we find, with A�t , t�����t− t��g�t�,

��u�0,t�� = exp
�
n=1

�
�− 1�n+1

n
Tr�An�� = 1, �30�

since

Tr�An� =	 dt1dt2 . . . dtng�t1�g�t2� . . . g�tn�

	 ��t1 − t2���t2 − t3� . . . ��tn − t1� = 0. �31�

Above, we have used ��0�=0, which is the right prescrip-
tion for the Heaviside function when the underlying stochas-
tic differential equation is defined in terms of an Itô dis-
cretized time evolution �26�. Collecting all of the above
results, we rewrite Eq. �18� as

Z =	 D
	 Dû
Du
��u
�t��exp�iS
 + i	
−T

0

dt
d


dt
	 dxû
� .

�32�

However, since û
�x , t� and u
�x , t� are integration fields, Eq.
�32� becomes
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Z =	 D
	 DûDu��u�0,t��exp�iS + i	
−T

0

dt
d


dt
	 dxû� ,

�33�

or, equivalently, integrating over 
�t�,

Z =	 DûDu�
	 dxû�x,t����u�0,t��exp�iS� . �34�

In view of Eq. �33�, we will assume in all our subsequent
considerations that u�0, t�=0. In other words, we have
moved for good to the locally comoving reference frame. As
fluid elements happen to stick �and spend a finite fraction of
their times� in shock discontinuities, the latter will be fre-
quently hosted at the origin of the locally comoving refer-
ence frame.

We stress, at this point, that the hypothesis of strong Gal-
ilean invariance �19� is a fundamental ingredient here, since
no role is given to the velocity boundary conditions at infin-
ity, in the Lagrangian formulation put forward in Eq. �33�.

IV. SHOCKS AND INTERMITTENCY

The response functional �34� can be decomposed as

Z = Zs + Zs̄, �35�

where Zs and Zs̄ refer, respectively, to the cases where shocks
and smooth field configurations are found at x=0, t=0. Re-
calling the discussion of Sec. II, it is clear that the statistical
properties of large negative velocity differences are all en-
coded in Zs.

According to the probabilistic interpretation of Z, we note
that Zs is not normalized to unit. Instead, Zs is normalized to
the “intermittency factor” �, where 0���1 is the fraction
of time a shock is found at the origin of the locally comoving
reference frame.

Let us�x� be a shock configuration, with velocity discon-
tinuity at x=0, at its instant of creation �27�. Assuming that
the shock creation is uniformly distributed in time, one may
write, for the probability density functional to get configura-
tion u0�x� at time t=0 �see Appendix A�,

Zs = �	
0

� d�

�
	

0

�

dT	 Dus�x�P�us�x��W��,T;u0�x�,us�x�� ,

�36�

where Dus�x�P�us�x�� is the probability measure for the cre-
ation of the shock us�x� conditioned to be in the sample
space of all shock creation events and W�� ,T ;u0�x� ,us�x�� is
a weighting functional.

Equation �36� is formally rigorous, but it is of hard prac-
tical implementation, due to the difficulty in getting informa-
tion on the functionals P�us�x�� and W�� ,T ;u0�x� ,us�x��.
Phenomenological arguments, however, can be helpful in or-
der to replace Eq. �36� by more tractable expressions.

Shocks are expected to have �i� mean interdistances of the
order of the integral scale L and �ii� lifetimes of the order of
T=L /U, where U is an estimate of the shock velocity jump.
The prototypical Burgers shock is the stationary configura-
tion

us�x;U� = − U tanh� U

2�
x� . �37�

Even though Eq. �37� is a solution of the forceless Burgers
equation, it can be used as a local approximation to general
viscous shocks around the position of velocity discontinuity.
Suppose that at time −T a configuration similar to Eq. �37� is
created and let g�U� be the probability density that it has
amplitude U. Due to property �ii� above, this shock is not
going to be observed at time t=0 if T�L /U. The contribu-
tion to Eq. �36� provided by shocks with the local profile
�37� is, then, estimated as

Zs = �	
0

�

dUg�U�
U

L
	

0

L/U

dTN	 DûDu �

	
	 dxû�x,t����u�0,t��exp�iS� , �38�

where the velocity field u�x , t� satisfies the boundary condi-
tion

u�x,− T� = us�x;U� . �39�

Expression �38� is, in fact, straigthforwardly obtained
from Eq. �A6�, taking the substitutions T�us�→L /U and
�Dus�x�P�us�x��→�0

�dUg�U�.
We will work with the phenomenologically simplified re-

sult �38� in place of Eq. �36�. In doing so, we conjecture that
the asymptotic statistical properties of negative velocity dif-
ferences are not affected by more detailed choices of shock
parametrization.

An interesting way to address the computation of Eq. �38�
is to perform the corresponding path integration over an ap-
propriate subset of the functional space, which would consist
of dominating configurations. That is precisely the purpose
of the saddle-point method applied in Refs. �11,22� to the
MSR turbulence context as a way to cope with the intermit-
tency phenomenon.

Saddle-point configurations dubbed instantons are associ-
ated with stationary values of the action. Taking functional
derivatives of the MSR action �10� with respect to the inte-
gration fields, we get

�tu + u�xu − ��x
2u = − i	 dx�û�x�,t�D��x − x��� �40�

and

�tû + u�xû + ��x
2û = 0. �41�

When solving Eqs. �40� and �41�, we have to take into ac-
count the constraints �28�

u�0,t� = 0, �42�

	 dxû�x,t� = 0. �43�

Instanton solutions of Eqs. �40� and �41�, which hold for
−T� t�0 and satisfy Eqs. �39�, �42�, and �43� can be readily
obtained,
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u�x,t� = us�x;U� ,

û�x,t� = 0. �44�

It is worth mentioning that the solution for u�x , t� in Eq. �44�
identifies Burgers shocks to instantons. Also, it is not diffi-
cult to find that the MSR action vanishes when evaluated for
the fields given in Eq. �44�. As it is the standard procedure in
the saddle-point method, we expand the MSR action in a
functional Taylor series around the instantons, retaining only
quadratic fluctuations. We replace, as a result, Eq. �10� by

S� = 	
−T

0

dt	 dxû��tu + �x�usu� − ��x
2u�

+
i

2
	

−T

0

dt	 dxdx�û�x,t�û�x�,t�D��x − x��� , �45�

where the velocity boundary condition becomes now u�x ,
−T�=0.

In order to compute the pdf of negative velocity differ-
ences, we introduce the characteristic function

Zs��� = �	
0

�

dUg�U�
U

L
	

0

L/U

dTN	 DûDu �

	
	 dxû�x,t����u�0,t��exp�iS� − i�z� , �46�

where z is the velocity-difference evaluated at t=0,

z = − 2U + u��,0� − u�− �,0� . �47�

The characteristic function Zs��� can be exactly computed, in
principle, since it is given in Eq. �46� by a quadratic field
theory. To evaluate Zs���, the saddle-point method can be
applied once again, this time in an exact way. The further
saddle-points equations for u�x , t� and û�x , t� are

�tu + �x�uus� − ��x
2u = − i	 dx�û�x�,t�D��x − x��� , �48�

�tû + us�xû + ��x
2û = ����x + �� − ��x − �����t� , �49�

supplemented by Eqs. �42� and �43�.
Observe that the viscosity term has the “wrong” sign in

Eq. �49�. To avoid the unbounded growing of û�x , t� for t
�0, we impose, as prescribed in Refs. �11,22�, the boundary
condition û�x ,0+�=0. Integrating Eq. �49� over the time in-
terval �−� ,��, with �→0, we get the “final condition”

û�x,0−� = ����x − �� − ��x + ��� . �50�

Furthermore, we have the exact saddle-point result �see Ap-
pendix B�

S̄� − �z̄ = 2�U +
i

2
	

−T

0

dt	 dxdx�û�x,t�û�x�,t�D��x − x��� .

�51�

It is interesting to note, due to Eq. �51�, that we do not have
to worry in finding the specific solution for u�x , t�. Equation

�49� is solved, in the vanishing viscosity limit, by

û�x,t� = ����x − x�t�� − ��x + x�t��� , �52�

where x�t�=�−Ut. Substituting Eq. �52� into Eq. �51� and
taking � /L�1, we find

S̄� − �z̄ = 2�U + i
D0L

2U
�2	

−2UT/L

0

dt�1 − e−t2� . �53�

We get, from Eq. �46�

Zs��� = �	
0

�

dUg�U�	
0

1

d� exp�2i�U −
D0Lc���

2U
�2� ,

�54�

where

c��� = 	
−2�

0

dt�1 − e−t2� . �55�

The negative velocity-difference pdf is computed from the
Fourier transform of the characteristic function, as

��z� =
1

2�
	

−�

�

d� exp�i�z�Zs���

= �	
0

�

dUg�U�	
0

1

d�� U

2�c���D0L

	exp
−
U�z + 2U�2

2c���D0L
� . �56�

Expression �56� gives, for large negative z, the asymptotic
pdf

��z� =
a

�z�3
+ . . . , �57�

where the dots refer to subleading contributions, and

a = �LD0g�0�	
0

1

d�c��� � 0.36�LD0g�0� . �58�

The expression for the coefficient �58� is a testable prediction
of the present theory. Alternative force-force correlation
functions can be used to recompute Eq. �58� and compare it
with the value to be found in further numerical simulations.
It is clear that in the Eulerian framework, the intermittency
factor � has to be replaced by

�� = 2n� , �59�

where n is the number of shocks per unit length.

V. CONCLUSIONS

We have obtained, with the help of instanton techniques,
the asymptotic form of the pdf of large negative velocity
differences in Burgers turbulence. The Lagrangian picture of
the Burgers flow was adapted to the MSR field theoretical
framework, a procedure which proved to be an important
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technical improvement over the Eulerian description. La-
grangian methods are, as a rule, welcome in the study of
small-scale intermittency, since they cope in a natural way
with the sweeping produced by large scale motions. In the
case of Burgers flow, sweeping produces shock advection,
making it difficult to find out the statistical properties of
velocity-difference fluctuations.

The introduction of Lagrangian coordinates was carried
out under the hypothesis of strong Galilean invariance. We
have found that the left tail pdf has the asymptotic form
��z�=a / �z�3, which agrees with the conjecture put forward in
Ref. �19�, that this is so when strong Galilean invariance
holds. We have obtained an explicit expression for the criti-
cal amplitude a, which motivates the study of further nu-
merical simulations of Burgers turbulence.

Arbitrary shocks of the Burgers forceless model are iden-
tified to instantons and taken, in the path-integral formulation
of the response functional, as the dominant configurations for
the determination of the velocity-difference fluctuations. We
have bypassed the detailed classification of all of these Bur-
gers shocks at their creation events, by noting that relevant
parameters of newborn shocks are their velocity jump, U,
and extension, assumed to scale with the integral length L.
Shocks are expected to have lifetimes of the order of L /U. In
view of the role of the dimensional parameters U and L, we
take the stationary Burgers shock �44� more as an illustration
than as an essential ingredient in the formalism.

We emphasize that the instanton distribution g�U� is not
able to yield the left tail pdf of velocity differences on its
own. The point is that the fluctuating background couples
with the shocks and by the usual instability mechanism dis-
cussed in Sec. II, large negative velocity differences are gen-
erated in the flow. One may wonder if this process of inter-
mittency generation is analogously found in the interaction
between the background and coherent structures in Navier-
Stokes turbulence.

An interesting problem where the instanton approach dis-
cussed here could be applied concerns the “artificial multi-
scaling” induced by stochastic forcing. As the authors of Ref.
�29� show with the help of numerical simulations, stochastic
forcing with a 1 /k spectrum leads to logarithmic corrections
in the structure functions which can be confused with
anomalous exponents. It is possible that the combination of
inviscid and viscous instanton methods may throw some
light on this issue from the theoretical point of view.
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APPENDIX A: DERIVATION OF Eq. (36)

Let us focus our attention on a flow which evolves under
a particular realization of the stochastic force f�x , t�. We also
suppose that a random ensemble of initial configurations is
given in the remote past �t→−��, so that at any instant of
time the possible velocity configurations yield a statistically
stationary ensemble.

We consider, now, the creation at time −T of a shock us�x�
localized at the origin of the locally comoving reference
frame, which survives until time t=0. Let T�us , f� be the
maximum value of T. Since the probability for the creation
of the shock us�x� in a time interval dT is also proportional to
dT, we may write

Zs = �	 Dus�x�P�us�x��

	� 1

T�us, f�	0

T�us,f�

dTP�u0,us;0,− T�us, f���
f

,

�A1�

where P�u0 ,us ;0 ,−T�us , f�� is the probability distribution as-
sociated with the transition from the shock configuration
us�x�, which was created at time −T, to the final configura-
tion �at time t=0� u0�x�. For the sake of clarity, we note that

P�u0,us;0,− T�us, f�� = ��u0�x� − L��us, f�;x,T�� , �A2�

where L��us , f� ;x ,T� is the velocity configuration which
evolves from the shock us�x� after the time interval T.

Equation �A1� can be rewritten as Eq. �36�. In fact,

Zs = �	 Dus�x�P�us�x��

		
0

� d�

�
	

0

�

dT
��� − T�us, f��P�u0,us;0,− T�� f

= �	
0

� d�

�
	

0

�

dT	 Dus�x�P�us�x��W��,T;u0�x�,us�x�� ,

�A3�

where

W��,T;u0�x�,us�x�� = 
��� − T�us, f��P�u0,us;0,− T�� f .

�A4�

If, as an approximation, T�us , f� does not depend on f�x , t�,
then

W��,T;u0�x�,us�x�� = ��� − T�us��
P�u0,us;0,− T�� f

�A5�

and, therefore,

Zs = �	 Dus�x�P�us�x��
1

T�us�
	

0

T�us�

dT
P�u0,us;0,− T�� f .

�A6�

Above, the averaged probability 
P�u0 ,us ;0 ,−T�� f can be
given as the MSR path-integral expression �34�.

APPENDIX B: DERIVATION OF Eq. (51)

There is some subtlety in the saddle-point evaluation of
characteristic functionals such as Eq. �46�. Since we are con-
sidering in Eq. �46� the evolution up to time t=0, one could
object that the û�x ,0+�=0 boundary condition sounds too
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loose. Actually, in order to apply the saddle-point method to
Eq. �46�, the time evolution is extended to t→�. Saddle-
point solutions are, then, such that u�x , t→��= û�x , t→��
=0. Note that the time extension does not change the value
of Zs���, once velocity configurations are integrated out at
t→� in the path integral �46�.

Taking these remarks into account, we multiply both sides
of Eq. �49� by u�x , t� and integrate them over space and time.
We find

	 dx	
−T

�

dtû��tu + us�xu − ��x
2u� = ��u��,0� − u�− �,0�� ,

�B1�

where we have used the boundary conditions u�±� , t�=0,
û�x , t�0�=0, and u�x ,−T�=0. Equation �51� follows imme-
diately from Eqs. �45�, �47�, and �B1�.
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